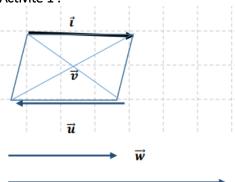
GEOMETRIE VECTORIELLE



Activité 2 :

1) $\overrightarrow{LM} = \overrightarrow{LK} + \overrightarrow{KM}$

2) $\overrightarrow{PQ} = \overrightarrow{PR} + \overrightarrow{RQ}$

3) $\overrightarrow{AB} = \overrightarrow{AC} + \overrightarrow{CB}$

4) $\overrightarrow{EG} = \overrightarrow{EF} + \overrightarrow{FG}$

Activité 3:

1) $\vec{u} = \overrightarrow{IA} + \overrightarrow{AI} = \overrightarrow{II} = \vec{0}$

2) $\vec{v} = \overrightarrow{OM} - \overrightarrow{ON} = \overrightarrow{NO} + \overrightarrow{OM} = \overrightarrow{NM}$

3) $\vec{w} = \vec{G}\vec{A} - 2\vec{G}\vec{B} + \vec{G}\vec{C} = \vec{G}\vec{A} - \vec{G}\vec{B} - \vec{G}\vec{B} + \vec{G}\vec{C} = \vec{G}\vec{A} - \vec{G}\vec{B} + \vec{G}\vec{C} - \vec{G}\vec{B} = \vec{B}\vec{A} + \vec{B}\vec{C}$

4) $\overrightarrow{m} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC} = \overrightarrow{AD}$

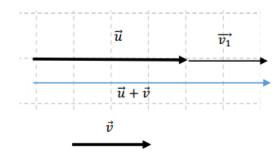
Activité 4:

A et B sont deux points du plan, par la relation de Chasles, nous avons

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$
, d'où $\overrightarrow{AB} = -\overrightarrow{BA}$

Activité 5: (les deux vecteurs sont colinéaires et de même sens)

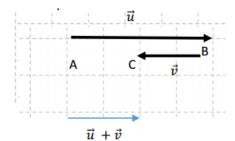
1) Reproduis sur ton cahier les deux vecteurs colinéaire \vec{u} et \vec{v} représentés ci-dessous



Pour la question 2) 3) et 4) voir la figure ci-dessus

5) Qu'est-ce qu'on peut dire du vecteur somme $\vec{u} + v$? (sens, direction, longueur)

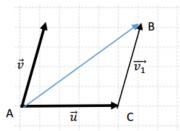
Activité 6 : (les deux vecteurs sont colinéaires et de sens différents)



- 1) $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{BC}$
- 2) $\vec{u} + \vec{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$
- 3) Le vecteur $\vec{u} + \vec{v}$ est de sens de A vers B, de direction parallèle à la droite (AB), de longueur AB BC
- 4) On trace une droite parallèle à (AB), on construis un segment de longueur AB BC

Activité 7 : (les deux vecteurs ne sont pas colinéaires)

Pour les questions 1) 2) et 3) voir la figure ci-dessous



- 1) Le vecteur $\vec{u} + \vec{v}$ est de sens de A vers B, de direction parallèle à la droite (AB), de longueur AB.
- 2) Etant donné les deux vecteurs $\vec{u}+\vec{v}$, construis le point B par la règle de parallélogramme.

Activité 8:

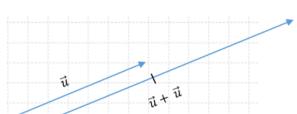
1) Le point *I* est le milieu du segment [*AB*]

2) $\vec{u} = \vec{GA} + \vec{GB} = (\vec{GI} + \vec{IA}) + (\vec{GI} + \vec{IB}) = 2\vec{GI}$

Multiplication d'un vecteur par un nombre réel

Activité 1:

Pour les questions 1) et 2)



3) On additionne les deux vecteurs de même direction et de sens alors le vecteur $2\vec{u}$ a la même direction et sens que \vec{u} et de longueur deux fois la longueur de \vec{u} .

Activité 2 :

Les vecteurs \overrightarrow{u} , \overrightarrow{m} , \overrightarrow{n} , \overrightarrow{p} , \overrightarrow{q} et \overrightarrow{w} sont parallèles avec

- 1) $\|\|\vec{w}\| = 2\|\vec{u}\|,$
- 2) $|||m|| = 3 \overrightarrow{||u||}$, ||
- 3) $\|\|\vec{n}\| = \frac{1}{2} \|\vec{u}\|,$
- 4) $\|\overrightarrow{p}\| = \frac{5}{2} \|\overrightarrow{w}\|,$
- 5) $\|\|\vec{q}\| = \frac{1}{6}\|\vec{m}\|$

Activité 3 :

L'objectif est de construire un parallélogramme ABCD.

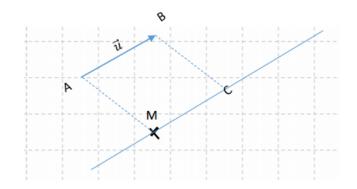
Activité 4:

- 1) Le point I est le milieu du segment [AB] c'est à dire $\overrightarrow{IB} = \frac{1}{2}\overrightarrow{AB}$ et comme ABCD est un parallélogramme donc \overrightarrow{AB} , on déduit alors que \overrightarrow{IB} .
- 2) ABCD est un parallélogramme, le point I appartient au segment [AB] donc \overrightarrow{IB} et \overrightarrow{CD} sont colinéaires.

Vecteurs directeurs d'une droite

Activité 1 :

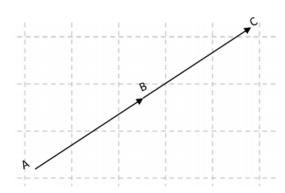
1)



2) La droite (D) est parallèle à la direction du vecteur $\vec{u} = \overrightarrow{AB}$, on construit le point C tel que ABMC est un parallélogramme.

Activité 2 :

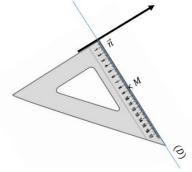
1)



- 2) Les trois points A, B et C sont alignés.
- 3) Si A, B et C sont alignés alors ils appartiennent à une même droite (D), d'où \overrightarrow{AB} et \overrightarrow{BC} sont colinéaires

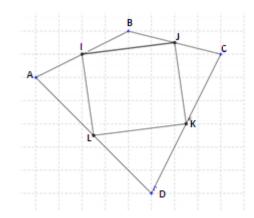
Vecteur normal d'une droite

Activité 1 :



Activité 2

1)



2) Par le théorème de Thalès appliqué au triangle ABC, nous avons

$$\frac{BI}{BA} = \frac{BJ}{BC} = \frac{1}{2}$$
, donc $(IJ)//(AC)$.

De même pour le triangle DAC, $\frac{DL}{DA} = \frac{DK}{DC} = \frac{1}{2}$, donc (LK)//(AC)

ce qui entraine (IJ)//(LK).

On applique le même raisonnement aux triangles ABD et CBD, et on obtient (IL)//(JK).

3) On déduit facilement que IJKL est un parallélogramme.