GEOMETRIE VECTORIELLE

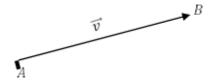
A la fin des activités, je dois être capable de (d') :

- maîtriser les techniques élémentaires des calculs vectoriels
- mettre en œuvre les techniques élémentaires pour l'étude vectorielle des situations rencontrées en géométrie pure

Notions sur les vecteurs

J'apprends un peu de vocabulaire

Un vecteur \vec{v} d'origine A, d'extrémité B, de longueur AB, de direction la droite (AB) (ou support) et de sens de A vers B est noté \overrightarrow{AB}



Je révise les notions vues en classe de 4ème

- $\vec{u} = \vec{v}$ si et seulement si les vecteurs \vec{u} et \vec{v}
 - ✓ ont la même longueur,
 - ✓ ont de direction parallèle,
 - ✓ sont de même sens.
- $\vec{u} = \vec{v}$ si et seulement si la translation $t_{\vec{u}}$ définie par le vecteur \vec{u} est égale à la translation $t_{\vec{v}}$ de vecteur \vec{v} ($t_{\vec{u}} = t_{\vec{v}}$).
- A, B et C sont trois points du plan, la relation de Chasles est donnée par $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

Figure 1 les points A, B et C sont non alignés

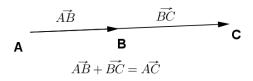
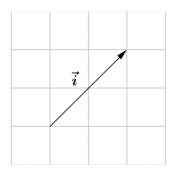


Figure 2 les points A, B et C sont alignés

Activité 1:

Représenter graphiquement les vecteurs suivants

- vecteur $\vec{u} = \vec{i}$
- \blacksquare vecteur \overrightarrow{v} opposé au vecteur $\overrightarrow{\iota}$
- Un vecteur $\vec{w} = 2\vec{\imath}$



Activité 2 :

Copie et Complète les pointillés.

1)
$$\overrightarrow{LK} + \overrightarrow{KM} = \cdots$$

2)
$$\overrightarrow{PQ} = ... + \overrightarrow{RQ}$$

3)
$$\overrightarrow{AB} = \overrightarrow{...C} + \overrightarrow{...B}$$

4)
$$\overrightarrow{E}_{...} = \overrightarrow{F} + \overrightarrow{G}$$

Activité 3:

Donne une expression simple des vecteurs $\vec{u}, \vec{v}, \vec{w}$ et \vec{m}

1)
$$\vec{u} = \overrightarrow{IA} + \overrightarrow{AI}$$

2)
$$\vec{v} = \overrightarrow{OM} - \overrightarrow{ON}$$

3)
$$\overrightarrow{w} = \overrightarrow{GA} - 2\overrightarrow{GB} + \overrightarrow{GC}$$

4)
$$\overrightarrow{m} = \overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{BC}$$

Activité 4 :

A et B sont deux points du plan

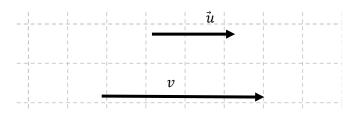
Démontre que $\overrightarrow{AB} = -\overrightarrow{BA}$ en admettant qu'on a toujours $\overrightarrow{AA} = \overrightarrow{0}$.

Somme de deux vecteurs

J'observe et je découvre

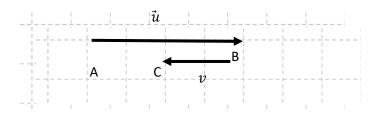
Activité 5 (les deux vecteurs sont colinéaires et de même sens)

1) Reproduis sur ton cahier les deux vecteurs colinéaire \vec{u} et \vec{v} représentés ci-dessous



- 2) Construis le vecteur $\overrightarrow{v_1}$ qui est égale à v et a comme origine l'extrémité du vecteur \vec{u}
- 3) 3) En déduire que $\vec{u} + \vec{v} = \vec{v} + \overrightarrow{v_1}$
 - 4) Construis le vecteur $\vec{u} + \vec{v}$
 - 5) Qu'est-ce qu'on peut dire du vecteur somme $\vec{u} + \vec{v}$? (sens, direction, longueur)

Activité 6 : (les deux vecteurs sont colinéaires et de sens différents)



- 1) Ecrire à l'aide des points A, B et C les deux vecteurs \vec{u} et \vec{v}
- 2) En déduire l'expression de la somme $\vec{u} + \vec{v}$
- 3) Qu'est-ce qu'on peut dire du vecteur somme $\vec{u} + \vec{v}$? (sens, direction, longueur)
- 4) Comment on construit le vecteur somme $\vec{u} + \vec{v}$ à l'aide d'une règle et un compas ?

Activité 7 : (les deux vecteurs ne sont pas colinéaires)

1) Reproduis les deux vecteurs \vec{u} et \vec{v} représentés ci-dessous.

- 1) Construis un vecteur $\overrightarrow{v_1}$ qui est égale à \overrightarrow{v} et a comme origine l'extrémité de \overrightarrow{v} .
- 2) Construis le vecteur $\overrightarrow{u} + \overrightarrow{v}$
- 3) Qu'est-ce qu'on peut dire du vecteur somme \vec{u} + \vec{v} ? (sens, direction, longueur)
- 4) Comment on construit le vecteur somme $\vec{u} + \vec{v}$ à l'aide d'une règle et un compas ?

Je contrôle mes connaissances

Activité 8 :

Simplifier les écritures vectorielles suivantes

1)
$$\overrightarrow{AB} + \overrightarrow{DE} + \overrightarrow{BD} + 2\overrightarrow{EA}$$

2)
$$2\overrightarrow{IA} - \overrightarrow{AB} + \overrightarrow{IB}$$

3)
$$\overrightarrow{IA} + \overrightarrow{AI}$$

Activité 9

Soient les points A, B et I vérifiant $\overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}I$ avec A et B deux points non confondus

1) Construis sur ton cahier le point A,B et I, qu'est-ce qu'on peut dire du point I?

Maintenant nous avons $\vec{u} = \overrightarrow{GA} + \overrightarrow{GB}$ en utilisant la relation de Chasles $\overrightarrow{GA} = \overrightarrow{GI} + \overrightarrow{IA}$ et

$$\overrightarrow{GB} = \overrightarrow{GI} + \overrightarrow{IB}$$

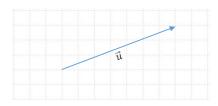
- 2) Donne une expression simple du vecteur \vec{u}
- 3) Construis sur ton cahier le vecteur \vec{u}

Α.

Multiplication d'un vecteur par un nombre réel

J'observe et je découvre

Activité 1:



- 1) Recopie et construis sur un papier quadrillé le vecteur \vec{u}
- 2) Construis le vecteur $\vec{w} = \vec{u} + \vec{u}$

Compare les vecteurs \vec{u} et \vec{w} (sens, direction et longueur) Remarque : on note aussi $\vec{w}=2\vec{u}$.

Activité 2 :

Je retiens l'essentiel

o Soient \vec{u} un vecteur non nul du plan et k un réel

 $1^{\rm er}$ cas : si k est un réel positif non nul, $k\vec{u}$ est un vecteur

- De même sens que \vec{u}
- De même direction que \vec{u}
- De longueur k fois celle de la longueur du vecteur \vec{u}

 $2^{
m eme}$ cas : si k est un réel négatif non nul, $k ec{u}$ est un vecteur

- De sens opposé au sens du vecteur \vec{u}
- De même direction que \vec{u}
- De longueur k fois celle de la longueur du vecteur \vec{u}

$$3^{\mathrm{ème}}$$
 cas : si $k=0$ alors $k\vec{u}=\vec{0}$

o Soient \vec{u} et v deux vecteurs, k et l deux nombres réels, on a

$$\bullet \quad k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

•
$$k(l\vec{u}) = (kl)\vec{u}$$

•
$$(k + l)\vec{u} = k\vec{u} + l\vec{u}$$

•
$$1\vec{u} = \vec{u}$$

$$\bullet \quad 0\vec{u} = \vec{0}$$

Je contrôle mes connaissances

Activité 3

On donne \vec{u} un vecteur du plan, construis sur une feuille quadrillée les vecteurs suivants

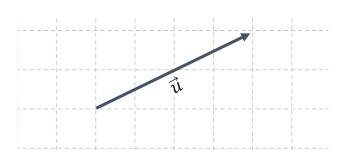
$$\vec{w} = 2\vec{u}$$
,

1)
$$\vec{m} = -3\vec{u}$$
,

$$2) \quad \vec{n} = \frac{1}{2}\vec{u}$$

$$3) \quad \vec{p} = \frac{5}{2} \vec{w},$$

4)
$$\vec{q} = \frac{1}{6}\vec{m}$$



B. Caractérisation de deux vecteurs colinéaires

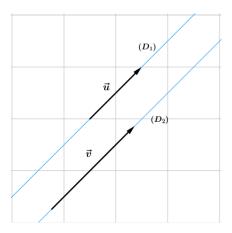
Je lis la définition

Définition :

Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si :

• Les supports des deux vecteurs \vec{u} et \vec{v} sont parallèles

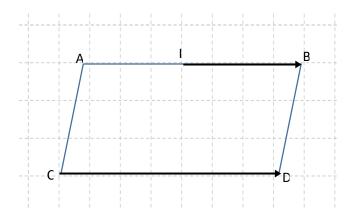
Dans ce cas, on note $\vec{u}//\vec{v}$.



J'observe et je découvre les propriétés

Activité 1: (1^{ère} propriété)

ABCD est un parallélogramme, I milieu du segment [AB]



- 1) Reproduis sur une feuille quadrillée la figure ci-dessus
- 2) Exprime en fonction du vecteur \overrightarrow{IB} l'expression du vecteur \overrightarrow{CD} .
- 3) Donne deux méthodes pour démontrer que \overrightarrow{IB} et \overrightarrow{CD} sont colinéaires.
- 4) Dans quelle condition deux vecteurs sont colinéaires ?

Je retiens l'essentiel

Propriétés 1

Les deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si il existe un réel k non nul tel que : $\vec{u}=k\vec{v}$ ou $\vec{v}=k\vec{u}$

Je lis la démonstration

- Si on a la relation $\vec{u}=k\ \vec{v}$, le vecteur $k\vec{v}$ a la même direction que \vec{v} (voir multiplication d'un vecteur par un nombre réel non nul) donc \vec{u} a la même direction que \vec{v} , donc $\vec{u}//\vec{v}$.
- Réciproquement, si $\vec{u}//v$ alors le vecteur $\overrightarrow{u_1} = k \ \vec{v} \| \text{avec} \ k = \frac{\|\vec{u}\|}{\|\vec{v}\|}$ est colinéaire à \vec{u} D'où les vecteurs $\vec{u} \ et \ \overrightarrow{u_1}$ ont la même direction et de même longueur c'est à dire $\vec{u} = \pm \vec{v}$, on déduit alors $\vec{u} = \pm k \vec{v}$.

Propriétés 2 (Règle de parallélogramme)

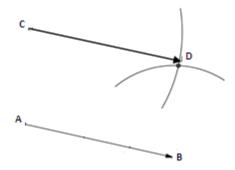
A, B et C sont trois points non alignés, ABCD est un parallélogramme si seulement si $\overrightarrow{AB} = \overrightarrow{CD} A$

Je lis la démonstration

A, B et C sont trois points non alignés, si $\overrightarrow{AB} = \overrightarrow{CD}$ alors les droites (AB) et (CD) sont parallèles et $\overrightarrow{AB} = \overrightarrow{CD}$

Réciproquement, si ABCD est un parallélogramme, alors AB = CD et les droites (AB) et (CD) sont parallèles.

Activité 2 : Comment construire deux vecteurs colinéaires par la règle de parallélogramme ?



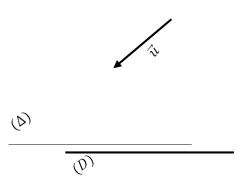
- 1) Trace un vecteur \overrightarrow{AB} de longueur 3cm sur une feuille quadrillée, on veut construire un vecteur \overrightarrow{u} colinéaire à \overrightarrow{AB} .
- 2) Place un point C qui n'appartient pas à la droite (AB),
- 3) à l'aide d'un compas, construis un arc de centre B et de rayon de même longueur que le segment [AC].

- 4) Construis un autre arc de centre C et de rayon égal à la longueur du segment [AB]
- 5) On obtient un point D intersection des deux arcs construits.

C. Vecteurs directeurs d'une droite

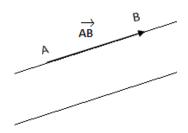
Définition

Le vecteur \vec{u} est un vecteur directeur de la droite (D) si et seulement si la direction (Δ) du vecteur est parallèle à la droite (D).



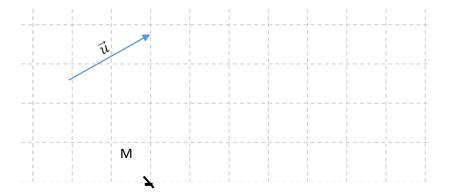
Propriétés:

• Une droite passant par deux points distincts A et B a pour vecteur directeur $\overrightarrow{u} = \overrightarrow{AB}$.



Si \vec{u} est un vecteur directeur de la droite (D) et si un vecteur \vec{v} est colinéaires à \vec{u} alors \vec{v} est aussi un vecteur directeur de (D).

Activité 1:



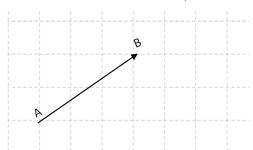
- 1) Reproduis sur une feuille quadrillée la figure ci-dessus.
- 2) Construis une droite (D) passant par M et de vecteur directeur \vec{u}

Activité 2:

Trois points A, B et C sont alignés si et seulement si \overrightarrow{AB} colinéaires à \overrightarrow{BC} .

Je fais la démonstration

1) Si \overrightarrow{AB} est colinéaire à \overrightarrow{BC} , construis le point C

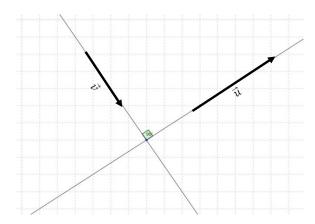


- 2) Qu'est- ce qu'on peut dire des points *A*, *B* et *C* ?
- 3) Si A, B et C sont alignés, montre que les vecteurs \overrightarrow{AB} et \overrightarrow{BC} sont colinéaires

D. Orthogonalité de deux vecteurs

Définition

Deux vecteurs \vec{u} et v sont orthogonaux si leurs supports sont orthogonaux.

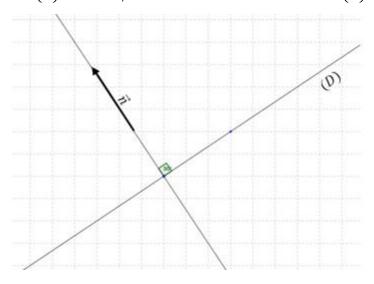


On note $\vec{u} \perp \vec{v}$

E. Vecteur normal d'une droite

Définition :

Soit (D) une droite, le vecteur \vec{n} est un vecteur normal de (D) si son support est perpendiculaire à (D).



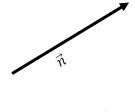
Propriétés d'un vecteur normal :

(D) une droite de vecteur directeur \vec{u} tout vecteur orthogonal à \vec{u} est un vecteur normal de la droite

Je contrôle mes connaissances

Activité 1:

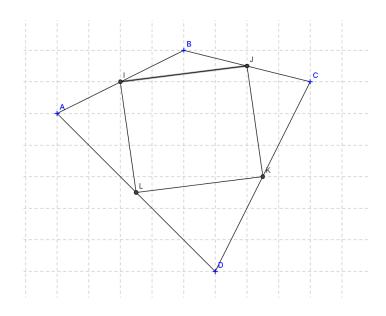
Trace une droite (D) de vecteur normal \vec{n} , passant par le point M



Activité 2

ABCD est un quadrilatère, les points I, J, K, L sont des milieux respectifs des segments [AB], [BC], [CD] et [DA]

Fais la figure



1) En utilisant le théorème de Thales, démontrer que $\overrightarrow{IJ}=\overrightarrow{LK}$. Qu'elle est la nature de la figure IJKL?

GEOMETRIE ANALYTIQUE

A la fin des activités, je dois être capable de:

- Acquérir la notion de géométrie analytique ;
- Mettre en œuvre les techniques élémentaires pour l'étude analytique de situations rencontrées en géométrie vectorielle

F. Somme de deux vecteurs de même origine!

Je découvre une méthode

Activité 1: Somme de deux vecteurs non colinéaires Soient 3 points A, B et C non alignés du plan.

- 1. Construis le point *D* tel que *ABDC* soit un parallélogramme.
- 2. Sur la figure, quel est le vecteur égal à \overrightarrow{AC} ?
- 3. Remplace \overrightarrow{AC} par le vecteur qui lui est égal et utilise la relation de Chasles pour déterminer le vecteur somme de \overrightarrow{AB} et \overrightarrow{AC}
- 4. Que représente \overrightarrow{AD} pour le parallélogramme \overrightarrow{ABDC} ?
- 5. Enonce une méthode pour construire la somme de deux vecteurs non colinéaires de même origine.

Activité 2 : Somme de deux vecteurs colinéaires Soient 3 points alignés A, B, C du plan.

- 1. Construis le point D tel $\overrightarrow{BD} = \overrightarrow{AC}$.
- 2. Remplace \overrightarrow{AC} par \overrightarrow{BD} et utilise la relation de Chasles pour calculer le vecteur somme de \overrightarrow{AB} et \overrightarrow{AC} .

Décomposition d'un vecteur en somme de deux vecteurs de directions données

Activité 3: Décomposition suivant deux droites passant par l'origine du vecteur Soient (D_1) et (D_2) deux droites du plan qui se coupent en A et M un point du plan.

- 1. Construis le point P projeté de M sur (D_1) parallèlement à (D_2) .
- 2. Construis le point Q projeté de M sur (D_2) parallèlement à (D_1) .

- 3. Quelle est la nature du quadrilatère *APMQ* ?
- 4. Trouve sur cette figure deux vecteurs d'origine A tels que leur somme soit égale au vecteur \overrightarrow{AM}

Coordonnées d'un vecteur dans un repère $(0, \vec{l}, \vec{J})$

J'observe et je découvre la définition

Activité 4 : Décomposition d'un vecteur suivant les axes d'un repère $(0, \vec{l}, \vec{j})$ et coordonnées d'un vecteur

Le plan est muni d'un repère $(0, \vec{l}, \vec{j})$. Place les points A et B du plan, de coordonnées respectives A(1; 2) et B(3; 5)

On veut exprimer \overrightarrow{AB} en fonction de \overrightarrow{OI} et \overrightarrow{OJ}

- 1. Faire une figure.
- 2. Construis les points P et Q projetés de A et de B sur(OJ) parallèlement à (OI).
- 3. Construis les points R et S projetés de A et de B sur (OI) parallèlement à (OJ).
- 4. La droite (PA) coupe la droite (SB) en C.
- 5. Cite tous les vecteurs égaux sur cette figure.
- 6. En déduire que
- 7. Comment sont les vecteurs \overrightarrow{RS} et \overrightarrow{OI} ? Exprime \overrightarrow{RS} en fonction de. \overrightarrow{OI}
- 8. Comment sont les vecteurs \overrightarrow{PQ} et \overrightarrow{OJ} ? Exprime \overrightarrow{PQ} en fonction de. \overrightarrow{OJ} .
- 9. Quelle est l'expression de \overrightarrow{AB} en fonction de \overrightarrow{OI} et \overrightarrow{OJ} ?

Le couple de réels (x, y) tels que AB =x. OI +y. OJ sont les « coordonnées » ou « composantes scalaires » du vecteur AB dans le repère (O, I, J) »

Activité 5 :

Je découvre la formule générale

Reprendre l'activité 4 avec $A(x_A; y_A)$ et $B(x_B; y_B)$

Donne la formule pour calculer les coordonnées d'un vecteur en fonction des coordonnées de son extrémité et de son origine.