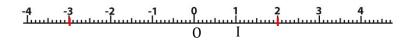
INTERVALLES

A la fin des activités de cette fiche, je dois être capable de (d'):


- représenter sur une droite graduée un intervalle donné
- reconnaître si un nombre réel appartient ou non à un intervalle donné
- représenter sur une droite graduée l'intersection et la réunion de deux intervalles donnés
- écrire un sous ensemble de R en utilisant des intervalles

A. Intervalles

J'observe et je découvre

Activité 1

Voici une droite (D) munie d'un repère (O, I) tel que les points de cette droite représentent les nombres réels (ensemble \mathbb{R}).

- 1- Colorie en rouge l'ensemble des points dont l'abscisse est un nombre plus petit que −3.
- 2- Colorie en bleu l'ensemble des points dont l'abscisse est un nombre plus grand que 2.
- 3- Trace en vert l'ensemble des points non coloriés.
- 4- « x » désigne l'abscisse d'un point quelconque de la droite.
 - a- Parmi les relations suivantes, trouve celle qui caractérise :
 l'ensemble tracé en rouge, l'ensemble tracé en bleu et l'ensemble tracé en vert.

$$x > 2$$
 $-3 \le x \le 2$ $x < -3$

b- Prends deux points quelconques d'abscisses y et z dans la partie coloriée en rouge et un autre point d'abscisse t compris entre y et z.

Dans quelle partie se trouve le point d'abscisse t ? Nous disons que la partie colorée en rouge représente un intervalle.

J'énonce la définition

c- Complète:

Une partie P de $\mathbb R$ est un intervalle si tout nombre compris entre deux nombres dans P est aussi un de P.

Je contrôle mes connaissances

- d- La partie colorée en vert représente-t-elle un intervalle ? Et la partie colorée en bleu ?
- e- Dire parmi les relations suivantes celles qui définissent des intervalles de

$$\mathbb{R}: x \ge 2$$
; $-6 \le x \le 0$; $x < 4$; $x \in \{-1, 0, 1, 5, \frac{1}{4}\}$; $2 < x \le 6$; $-1 \le x < 5$.

Bornes d'un intervalle et notation

Activité 2

1- La plus petite valeur qui délimite un intervalle (lorsqu'elle existe) est dite « **borne inférieure** » de l'intervalle.

De même, la plus grande valeur qui délimite un intervalle (lorsqu'elle existe) est dite « **borne supérieure** » de l'intervalle.

Lorsque les relations de la question de l'activité 4.e- ci-dessus définissent un intervalle, donne (lorsqu'elles existent) les bornes inférieure et supérieure de l'intervalle.

Les notations et vocabulaires à retenir : les différents types d'intervalles

2- Recopie et complète (observe bien l'orientation des crochets et la représentation de l'intervalle lorsque la borne appartient ou n'appartient pas à l'intervalle) :

Ecriture de l'intervalle	Lecture	Ensemble des « x » tels que :	Représentation
] ← ; →[L'ensemble $\mathbb R$ de tous les nombres réels	-	
]a ; →[Intervalle des nombres plus grands que « a »	x > a	a
[a ; →[Intervalle des nombres supérieurs ou égaux à « a »	x≥a	a
]← ; b[Intervalle des nombres plus petit que « b »	x < b	
]← ; b]	Intervalle des nombres inférieurs ou égaux à « b »	x ≤ b	b
[a;b]	Intervalle fermé « a, b »		
[a ; b[Intervalle « a, b », fermé en « a », ouvert en « b »		a b
]a ; b]	Intervalle « a, b », ouvert en « a », fermé en « b »		
]a ; b[Intervalle ouvert « a, b »		

Je contrôle mes connaissances

Exercice 1:

1- Représente sur une droite graduée les intervalles suivants :

$$]-3;1[;[-2;4];]5;\rightarrow[;]\leftarrow;-2];[-4;-1[$$

2- Ecris sous forme d'intervalle chacun des ensembles de nombres définis suivants :

$$x \le -2$$
 ; $x > 3$; $-4 < x < 6$; $-2 \le x < 2$; $x \ge 5$

3- Traduis à l'aide d'inégalité :

$$x \in]0; \rightarrow [; x \in]-4; 5[; x \in [-2; \rightarrow [; x \in [-10; 10]]$$

B. Intersection et réunion d'intervalles

J'observe et je découvre

Activité 3

On donne les deux ensembles suivants :

$$A = \{1; 2; 3; 4\}$$

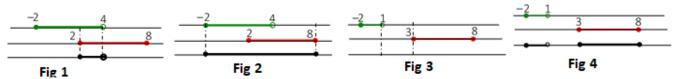
$$B = \{3; 4; 5; 6\}$$

1- Quel est l'ensemble des nombres qui se trouvent à la fois dans l'ensemble A et dans l'ensemble B.

On appelle cet ensemble l'intersection des ensembles A et B.

Recopie et complète :

- « L'...... des ensembles A et B est l'ensemble des éléments appartenant à la fois à A et à B ». On note : A ∩B et on lit « A inter B ».
- $x \in A \cap B$ équivaut à « $x \in A$ et $x \in B$ ».
- 2- Donne l'ensemble de tous les nombres figurant dans A ou dans B.


On appelle cet ensemble la réunion des ensembles A et B.

Recopie et complète :

- « La des ensembles A et B est l'ensemble des éléments appartenant à A ou à B, ».
- On note: $A \cup B$ et on lit « A union B ».
- « ∈ A ∪ B équivaut à « x ∈ A ou x ∈ B ».

Activité 4

Voici quelques représentations graphiques :

1- Dans la figure 1, quels intervalles représentent la partie colorée en vert et

la partie colorée en rouge ?

Que représente la partie colorée en noir et en gras dans la figure 1?

Complète: $[-2; 4[\cap [2; 8] = ...; ...]$

Que représente la partie colorée en noir et en gras dans la figure 2?

Complète : $[-2; 4[\cup [2; 8] = ...; ...]$

2- Dans la figure 3, les deux intervalles ont-ils un élément commun ?

Quelle est leur intersection?

Nous disons que les deux intervalles sont « disjoints ».

3- En considérant la figure 4, peux-tu écrire la réunion des deux intervalles sous la forme d'un intervalle?

Recopie et complète :

Lorsque deux intervalles n'ont pas d' commun, leur intersection est vide.
On dit qu'ils sont
L'intersection de deux intervalles est soit vide , soit un
La réunion de deux intervalles n'est pas toujours un
Lorsque les deux intervalles ont un point commun,
la réunion de deux intervalles est un

Je contrôle mes connaissances

Activité 5

Représente sur une droite graduée et écris plus simplement :

] ←; 11[
$$\cup$$
]-8; →[; [-3; →[\cap]-5; 2];]-8; 1]
 \cup]1; 5[; [1; 8] \cap [1; 2[